

Report on the Neutrino & Subterranean Science Workshop

NeSS2002

September 19-21, 2002

Washington DC.

http://www.physics.umd.edu/ness02/

Jordan A. Goodman University of Maryland

NeSS 2002 and NFAC

Charge to Workshop from OSTP

- Organize a workshop on the IceCube neutrino telescope and "research on neutrino collectors, including applications for underground research"
- Request to National Research Council
 - Establish Neutrino Facilities Assessment
 Committee (NFAC) with a similar (but more restricted) charge.
- NeSS 02 and NFAC have been coordinated
 - Some NFAC members attended NeSS
 - Report on the NeSS conference went to NFAC

The NeSS 2002 International Organizing Committee:

- John Bahcall, Institute for Advanced Study
- David Berley, University of Maryland
- Enrique Fernandez, University of Barcelona, Spain
- Thomas Gaisser, (chair) University of Delaware
- Jordan Goodman, University of Maryland
- Edward Kolb, Fermilab and University of Chicago
- Arthur McDonald, Queen's University Nat Lab, Canada
- Brian McPherson, New Mexico Tech
- William Press, Los Alamos Nat Lab
- Hamish Robertson, University of Washington
- Bernard Sadoulet, University of California, Berkeley
- Yoji Totsuka, University of Tokyo, Japan
- Michael Turner, University of Chicago
- Eli Waxman, Weitzman Institute, Israel

Ness 2002 Details

- Truly interdisciplinary meeting
- Eleven working groups (that actually worked)
 - Six sub-disciplines of physical science
 - double beta-decay, proton decay, neutrino oscillations, dark matter, solar neutrinos, astrophysical and cosmological neutrinos;
 - Three sub-disciplines of geoscience
 - geology, geoengineering and geobiology
 - Plus national security, and education and outreach.
- 320 participants from all over the world
 - Despite the short lead-time
- Working groups wrote summaries and presented findings to the meeting.

NeSS 2002 Agenda

Thursday, September 19, 2002

Opening Remarks- Bordogna

NSF View of NeSS 2002- Dehmer

Theoretical perspectives on fundamental physics underground - Ellis

Theoretical perspectives on astrophysics from underground-Turner

Experimental Perspectives on Underground Science- Freedman

Perspectives on Underground Geo-Science and Engineering- **Onstott**

Report on NRC Study- Barish

Parallel Working Group Sessions I

Friday, September 20, 2002

Parallel Working Group Sessions II
US High Energy Neutrino Experiments
in Ice- Halzen

Friday, September 20, 2002

Other High Energy Neutrino
Experiments -including
ANTARES, NESTOR, NEMO,
Baikal – Fernandez

Subterranean Science- Haxton

Non-US Subterranean Plans-Kajita

US San Jacinto- Sobel

US Carlsbad Underground National Laboratory- **Haines**

US Subterranean Facility at Homestake- **Haxton**

Saturday, September 21, 2002

Parallel Sessions III - Working Group Windups

Summaries of the Working Groups

Future Directions- Bahcall

Concluding Remarks- Gaisser

Consensus of Working Groups

- The great potential and intense activity in this field demand the creation of a program for science done underground, including geobiology, geophysics, physics and astronomy.
- Concerning the two major elements of the charge to the workshop there was unanimous agreement of the working group leaders that:
 Both of these efforts should be supported.
 - IceCube will probe the sources of the highest energy particles by observing high-energy neutrinos from distant regions of the Universe.
 - Experiments to detect low energy neutrinos or search for dark matter and rare processes in the low-background environment of an **underground** laboratory are different in design and goals from IceCube.
- There was great enthusiasm for the physics and geosciences goals that could benefit from the existence of a national underground laboratory as well as the national security benefits.
- Plus it was clear that a new program in underground science could have a coordinated education and outreach benefit built into all aspects of the program from its inception.

Working Group Summaries NeSS2002

Astrophysical Neutrino Science

- Use high energy neutrinos to find and study the sources of high energy cosmic rays
- 1 TeV 10 PeV is the most favorable range for observation of extreme sources:
 - Gamma-ray bursts
 - Active galactic nuclei
 - Microquasars
- WIMP / dark matter detection

Astrophysical Neutrinos

- Require a detector volume of the order 1km³
 - place detectors in a large, natural volume of clear water or ice.
- Detect neutrinos in the energy range above the background of atmospheric neutrinos
 - Atmospheric neutrinos serve for calibration in the TeV energy region.
- Consensus: the science warrants both
 - Ice, at the South Pole.
 - Water, in the northern hemisphere
 - Northern hemisphere effort was started after IceCube approval!

IceCube Design

- Design of all major IceCube components builds on extensive experience with AMANDA
- IceCube designed to detect neutrinos of all flavors at energies from 10⁷ eV (SN) to 10²⁰ eV & beyond
- Instrumented volume: One km³
 - 80 strings
 - 4800 PMTs in Digital Optical Modules (DOMs)
 - 160 IceTop tanks
 - 1400 m to 2400m depth
 - Not a cube, but there are no rappers named IceHexagonoid

Double Beta Decay

Neutrinoless double beta decay:

- is the most promising technique for determining the overall scale of neutrino mass.
- Recent neutrino oscillation results provide compelling arguments for new experiments with 100-fold increases in sensitivity.
- Several promising experiments using distinct technologies have reached an advanced stage of development.
- Because the ultimate sensitivity of new techniques is difficult to anticipate - more than one nextgeneration experiment must be supported.

Double Beta Decay

- Neutrinoless double beta decay
 - tests if v = v
 - Searches for new CP violating phases, and a variety of beyond the- standard-model phenomena.
- The 0.01 eV goal requires:
 - sensitivity to half lives in excess of 10²⁸ years.
 - source masses ~1000 kg
 - unprecedented suppression of cosmic ray and radioactivity backgrounds.
 - Several of the most promising experiments need enriched isotopes. Thus the scale and cost of future experiments are significant.

Double Beta-Decay Experiments

$\beta\beta$ Exps.	Isotope	Technique	Mass(kg)	Enriched	$\langle m_V^{} \rangle$ eV	m.w.e.	Location
Heid/Moscow	⁷⁶ Ge	Ge crystal	9.9	86%	≤0.40	2700	Gran Sasso
IGEX	⁷⁶ Ge	Ge crystal	~ 9	86%	≤0.44	2450	Canfranc, Sp.
UCI	⁸² Se	TPC with foils	0.014	97%	≤7.7	290	Hoover Dam
ELEGANT	¹⁰⁰ Mo	drift chamber- scintillators	0.20	94.5%	≤2.7	1800	Oto, Japan
Kiev	¹¹⁶ Cd	CdWO ₄ crystals	0.09	83%	≤3.3	1000	Ukraine
Missouri	¹²⁸ Te	geochemical	Te ore	no	≤1.5	N/A	N/A
Milano	¹³⁰ Те	cryogenic TeO ₂ crystals	2.3	no	≤2.6	2700	Gran Sasso
Cal-UN-PSI	¹³⁶ Xe	high pres. TPC	2.1	62.5%	≤3.5	3000	Switzerland
UCI	¹⁵⁰ Nd	TPC foils	0.015	91%	≤7.1	290	Hoover Dam
NEMO3	82 Se, 100 Mo, 116 Cd, 150 Nd	drift chamber- scintillator	1-10	yes	~0.1	4800	Frejus, France
CUORICINO	¹³⁰ Te	cryogenic TeO ₂ crystals	11.5	no	~0.1	2700	Gran Sasso
GENIUS	⁷⁶ Ge	400 Ge cystals	1000	yes	0.01	2700	Gran Sasso
MAJORANA	⁷⁶ Ge	400 Ge crystals	500	yes	0.02	≥4000	
CAMEO	⁸² Se,	Borexino CTF	~1	yes	~1		Gran Sasso
MOON	¹⁰⁰ Mo	scintillator+foils	3400	no	0.03	≥2500	
CUORE	¹³⁰ Te	1020 cryogenic TeO ₂ crystals	210	no	0.02		Gran Sasso
EXO	¹³⁶ Xe	high pres. TPC	10000	yes	0.01	≥2000	
DBCA-II(2)	¹⁵⁰ Nd	drift chamber	18	yes	~0.05		Oto, Japan

Dark Matter

- Detect the ~30% of the Universe that is:
 - Not visible
 - Non baryonic
- Planned experiments will:
 - probe the parameter space allowed by current theory
 - potentially open the field of WIMP astronomy

Dark Matter

Current and Future Experiments

Technology	CURRENT Fiducial Mass	(2001–) Funding	Location	PROJECTED Mass Goal	(2005–) Location
/Collab. Name_ Liquid Xe	Goal / (Now)	source			
XENON	100 kg (-)	US	**	1000 kg	**
ZEPLIN	30 kg (3 kg)	UK/US	Boulby,UK	1000 kg	Boulby,UK
XMASS	20 kg (1 kg)	Japan	Kamioka,Japan	1000 kg	**
Cryogenic (T<1K)					
CDMS/CryoArray	7 kg (1 kg)	US	Soudan,US	1000 kg	**
EDELWEISS	7 kg (0.7 kg)	France	Frejus,France	35 kg	Frejus,France
EuroCryo Collab		Europe	**	1000 kg	**
Gas TPC					
DRIFT	1 kg (0.2 kg)	US/UK	Boulby,UK	100 kg	**
HP Ge					
MAJORANA	40 kg (2 kg)	US	**	500 kg	**
GENIUS	40 kg (5 kg)	Europe	Gran Sasso,Ity	1000 kg	Gran Sasso,Ity

WIMP Sensitivity

Solar Neutrinos

- More to do on solar neutrinos:
 - Build on recent successes
 - Measure processes and parameters of neutrino transformations.

 Use high-intensity underground accelerator to understanding nuclear reactions that power the Sun and supernovae.

Solar Neutrinos

- Future solar neutrino experiments will:
 - make progress in understanding the complete neutrino mixing matrix
 - provide a stringent test of the Standard Solar Model.
 - require a deep (>4000 mwe) and dedicated underground laboratory
- An underground accelerator facility would allow significant progress in our understanding of stellar processes
- This research program would benefit significantly from the centralized infrastructure at an underground lab

Neutrino Oscillations

- Measure with precision neutrino oscillations and CP violation with long baseline accelerator neutrino beams
- Goals: to answer
 - Why are the masses so small?
 - Are there additional "sterile" neutrinos?
 - Why are the mixings so large?
 - What is the connection between the lepton and baryon sectors?
 - Can V CP violation explain the baryon / antibaryon asymmetry?

Neutrino Oscillation Measurements

Solar and Atmospheric results determine Δm_{12}^2 , θ_{12} , Δm_{23}^2 , θ_{23}

$$\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix}$$

$$= \begin{pmatrix} 1 \\ c_{23} & s_{23} \\ -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & s_{13}e^{i\delta} \\ 1 \\ -s_{13}e^{i\delta} & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} \\ -s_{12} & c_{12} \\ v_{3} \end{pmatrix}$$

$$Atmospheric: \theta_{23}$$

$$Solar: \theta_{12}$$

Need to measure: Sign of $\Delta m_{23}{}^2$, CP phase δ , θ_{13} ($\nu_e{\to}\,\nu_\mu)$

Neutrino Oscillation Roadmap

Stage 0: Current near term program

NuMI (K2K) checks atmospheric oscillations and measures Δm_{23}^2 to about 10% MiniBooNE makes definitive check of LSND and measures associated Δm^2

Stage 1 - Constrain / measure $\sin^2 2\theta_{13}$

NuMI /MINOS on-axis probes $\sin^2 2\theta_{13} > 0.06$ @ 90%CL NuMI/JHF offaxis could go down to $\sin^2 2\theta_{13} > 0.01$ @ 90%CL FNAL to NUSL with 100kton detector?

Stage 2 - Measure CP violation and sign of Δm^2_{23} with conventional superbeams and very large detectors (500 to 1000ktons)

Must have $\sin^2 2\theta_{13} > 0.01$

Need to measure $P(\nu_{\mu} \rightarrow \nu_{e})$ then $P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$

Need increased rate (especially for \vec{v} 's) \Rightarrow Need high intensity proton sources

Stage 3 - Measurements with Neutrino Factory

Map out CP violation with precision for $\sin^2 2\theta_{13} > 0.01$

Probe $v_u \rightarrow v_e$ transitions down to $\sin^2 2\theta_{13} > 0.001$

Proton Decay

- Current higher unification models have proton decay as a compelling prediction at a rate not reached by previous detector generations.
- The next generation of proton decay detector needs to be a factor of nearly 20 times bigger to reach the predicted lifetime range in a wide variety of modes.
- Unique window to extremely high-energy physics (sensitive to mass scales at 10¹⁵ GeV)
- Many modifications of GUT predict proton decay within the reach of next generation (~1Mt) experiments

$$p \rightarrow e^+ \pi^0$$

- SuperK: $\tau(p \rightarrow e^+\pi^0) > 1.6 \times 10^{33}$ year (90% CL, 25.5 kt year)
- Minimal SUSY GUT: $\tau(p \rightarrow e^{+}\pi^{0}) = 8 \times 10^{34} \text{year} (M_{V}/10^{16} \text{GeV})^{4}$ $M_{V} > 1.4 \times 10^{16} \text{GeV}$
- Flipped SU(5): $\tau(p \rightarrow e^{+}\pi^{0}) = 4 \times 10^{35} \text{year} (M_{V}/10^{16} \text{GeV})^{4}$ $M_{V} > 2.6 \times 10^{15} \text{GeV}$
- 5-D orbifold GUT: $\tau(p \rightarrow e^+\pi^0) \approx 10^{34}$ year May well be just around the corner

$$(v_L \quad v_R) \begin{pmatrix} & m_D \\ m_D & M \end{pmatrix} \begin{pmatrix} v_L \\ v_R \end{pmatrix}$$

$$m_V = \frac{m_D^2}{M} << m_D$$

Fate of Secular Conservation Laws

• Parity Fallen 1956

Charge Conjugation Fallen 1956

• CP Fallen 1964

• T Fallen 1999

• Lepton Family Fallen 1998 (μ) , 2002 (e)

• Lepton Number Still viable $(0\nu\beta\beta?)$

Baryon Number Still viable

Geo-Sciences

- Theme: Coupled processes in the Earth at depth
 - Life at depth
 - Fluid flow and transport at depth
 - Rock deformation at depth
- Significant potential for:
 - scientific and engineering innovation
 - Education and outreach

Proposed New Approach:

Develop a US laboratory and observatory underground, inside the earth.

Much like surgery permits a physician to examine internal bones and organs recognized on X-rays or CAT scans, NUSL will be a fully instrumented, dedicated laboratory and observatory for scientists to examine Earth's interior.

Microbiology in Extreme Environments

- Recent discoveries of the adaptability of microbial life: ability to survive and evolve in environments characterized by high/low temperatures, extreme pressures, acidity, and salinity
- Evolution in isolated environments
 - A model for astrobiology: as the earth has exchanged matter with other planets, is this a mechanism for the migration of life?
 - What is the probability that life can survive in a hostile environment, and how do the stresses affect adaptation?
 - On earth, can the genomic databases of key microorganisms be used to link evolutionary sequences with geochemical and/or paleontological events?
- Terrestrial extremophiles are the most accessible model for life that may exist elsewhere

Fractures are Key to Many Processes

- Fluid Flow
- Rock Strength
- Heat Flow
- Chemical Transport
- Ore Formation
- Faults & Earthquakes
- Biosphere for deep life to colonize and pathways for nutrient transport.

Mauna Loa fissure eruption, D.A. Clague

Education and Outreach

- Most E&O projects suffer because:
 - Uncoordinated, unfocused "goal creep"
 - Not possible to offer sustained programs that pursue goals in depth
 - Almost no research and evaluation
 - Workforce issues not effectively addressed
 - Strategies do not optimize resources, e.g., scientists' time

Five "NeSS factors" afford critical opportunities to demonstrate how to do E&O right:

- 1. Ground-up coordinated context
- 2. Fundamental origins questions pursued in remote & extreme frontier environments
- 3. Cutting-edge multidisciplinary science
- 4. Collaborative multi-site effort
- 5. Facilities located in areas inhabited by underserved groups

Multiple sites discussed for underground lab:

- Homestake
- •WIPP
- San Jacinto

J Goodman

Summary of the present non-US underground labs.

Conclusions of **NeSS** 2002

- There is great potential and intense activity in this field.
- Consensus for creation of a program for science done underground, including
 - Geobiology
 - Geophysics
 - Physics
 - Astronomy
- IceCube will open a new window by observing highenergy neutrinos from distant regions of the Universe.
- There was unanimous agreement that both of these efforts should be supported.

Science Underground

IceCube

- Ultrahigh energy cosmic ray sources
- Study of extreme objects AGN, GRB, Supernova, μquasars
- Wimp detection

Neutrino-less double beta decay

- Is the neutrino is own antiparticle
- Absolute neutrino mass scale

Dark matter experiments:

- Detection of dark matter
- SUSY
- Wimp Astronomy

Solar neutrinos

- Precision measurements of neutrino mixing
- Tests of Standard Solar Model

Science Underground

Neutrino oscillations and CP violation:

- Baryon Asymmetry / Leptogenesis
- Precision measurements of standard model parameters θ_{1-3}

Proton decay:

- Nucleon Lifetime
- Heavy neutrino mass

Geosciences laboratory:

- Coupled processes in the Earth at depth
- Growth and survival of novel microscopic life forms
- Fluid flow, rock deformation and geochemical processes.

Low background counting and seismic detection:

- National security isotope identification
- Nuclear blast detection

Education and Outreach

Integrated ground up approach

Reports Online

- Conference Website has the presentations http://www.physics.umd.edu/ness02/
- The documents can be found at: http://umdgrb.umd.edu/goodman/ness02/
- This presentation
 http://umdgrb.umd.edu/goodman/ness02
 http://www2.physics.umd.edu/~goodman/